首页> 外文OA文献 >Self-Organization of plant vascular systems: claims and counter-claims about the flux-based auxin transport model
【2h】

Self-Organization of plant vascular systems: claims and counter-claims about the flux-based auxin transport model

机译:植物血管系统的自组织:关于基于通量的生长素运输模型的主张和反主张

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The plant hormone auxin plays a central role in growth and morphogenesis. In shoot apical meristems, auxin flux is polarized through its interplay with PIN proteins. Concentration-based mathematical models of the flux can explain some aspects of phyllotaxis for the L1 surface layer, where auxin accumulation points act as sinks and develop into primordia. The picture differs in the interior of the meristem, where the primordia act as auxin sources, leading to the initiation of the vascular system. Self-organization of the auxin flux involves large numbers of molecules and is difficult to treat by intuitive reasoning alone; mathematical models are therefore vital to understand these phenomena. We consider a leading computational model based on the so-called flux hypothesis. This model has been criticized and extended in various ways. One of the basic counter-arguments is that simulations yield auxin concentrations inside canals that are lower than those seen experimentally. Contrary to what is claimed in the literature, we show that the model can lead to higher concentrations within canals for significant parameter regimes. We then study the model in the usual case where the response function Φ defining the model is quadratic and unbounded, and show that the steady state vascular patterns are formed of loopless directed trees. Moreover, we show that PIN concentrations can diverge in finite time, thus explaining why previous simulation studies introduced cut-offs which force the system to have bounded PIN concentrations. Hence, contrary to previous claims, extreme PIN concentrations are not due to numerical problems but are intrinsic to the model. On the other hand, we show that PIN concentrations remain bounded for bounded Φ, and simulations show that in this case, loops can emerge at steady state.
机译:植物激素生长素在生长和形态发生中起核心作用。在茎尖分生组织中,生长素通量通过与PIN蛋白的相互作用而被极化。基于浓度的通量数学模型可以解释L1表面层的叶序轴的某些方面,其中生长素的积累点起汇聚作用并发展成为原基。在分生组织的内部情况不同,原基作为生长素的来源,导致血管系统的启动。生长素通量的自组织涉及大量分子,仅凭直觉推理就难以治疗。因此,数学模型对于理解这些现象至关重要。我们考虑基于所谓的通量假设的领先计算模型。该模型已受到各种批评和扩展。基本的反论点之一是,模拟得出的运河内生长素浓度低于实验观察到的浓度。与文献中所主张的相反,我们表明,该模型可以在重要参数方案下导致运河内更高的浓度。然后,我们在通常情况下研究模型,其中定义模型的响应函数Φ是二次且无界的,并表明稳态血管模式是由无环有向树形成的。此外,我们显示出PIN浓度可以在有限时间内发生变化,从而解释了为什么以前的模拟研究引入了临界值,这些临界值迫使系统具有受限的PIN浓度。因此,与先前的权利要求相反,极限PIN浓度不是由于数值问题引起的,而是模型固有的。另一方面,我们证明了PIN的浓度仍保持在有界Φ的范围内,而模拟表明,在这种情况下,环路可能会在稳态下出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号